Functional equations for totients

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence and continuous dependence for fractional neutral functional differential equations

In this paper, we investigate the existence, uniqueness and continuous dependence of solutions of fractional neutral functional differential equations with infinite delay and the Caputo fractional derivative order, by means of the Banach's contraction principle and the Schauder's fixed point theorem.

متن کامل

Convergence of an Approach for Solving Fredholm Functional Integral Equations

In this work, we give a product Nyström method for solving a Fredholm functional integral equation (FIE) of the second kind. With this method solving FIE reduce to solving an algebraic system of equations. Then we use some theorems to prove the existence and uniqueness of the system. Finally we investigate the convergence of the method.

متن کامل

Quadratic $alpha$-functional equations

In this paper, we solve the quadratic $alpha$-functional equations $2f(x) + 2f(y) = f(x + y) + alpha^{-2}f(alpha(x-y)); (0.1)$ where $alpha$ is a fixed non-Archimedean number with $alpha^{-2}neq 3$. Using the fixed point method and the direct method, we prove the Hyers-Ulam stability of the quadratic $alpha$-functional equation (0.1) in non-Archimedean Banach spaces.

متن کامل

Power Totients with Almost Primes

A natural number n is called a k-almost prime if n has precisely k prime factors, counted with multiplicity. For any fixed k > 2, let Fk.X/ be the number of k-th powers m 6 X such that !.n/ D m for some squarefree k-almost prime n, where !. ! / is the Euler function. We show that the lower bound Fk.X/ " X=.log X/ holds, where the implied constant is absolute and the lower bound is uniform over ...

متن کامل

Least Totients in Arithmetic Progressions

Let N(a, m) be the least integer n (if exists) such that φ(n) ≡ a (mod m). Friedlander and Shparlinski proved that for any ε > 0 there exists A = A(ε) > 0 such that for any positive integer m which has no prime divisors p < (log m) and any integer a with gcd(a,m) = 1, we have the bound N(a,m) ¿ m. In the present paper we improve this bound to N(a,m) ¿ m.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the American Mathematical Society

سال: 1931

ISSN: 0002-9904

DOI: 10.1090/s0002-9904-1931-05109-0